Given an algebra $\mathfrak{g}$, the killing form is defined as $K(x, y) = \operatorname{Tr}(\operatorname{ad}(x) \circ \operatorname{ad}(y))$, but when $\mathfrak{g}=\mathfrak{gl}(n)$, we have that:
$\operatorname{Tr}([x, y])=\operatorname{Tr}(xy-yx)=0$
so is it true that $\operatorname{Tr}([\mathfrak{gl}(n), \mathfrak{gl}(n)])=0?$