At the 2th chapter of the "Elementos de Topología General" by Fidel Casarrubias Segura and Ángel Tamariz Mascarúa it is written that the interior operator $\eta$ induces a topology and to prove this it say that defining the operator $$\kappa:\mathcal{P}(X)\owns{E}\rightarrow{X\setminus{\eta(E)}}\in\mathcal{P}(X)$$ it is possible to demonstrate that $\kappa$ is a closure operator and so $\eta$ induce a topology on X that is the same of closure operator $\kappa$.
Well since $\eta$ is an interior operetor I know that:
- $\eta(X)=X$;
- $\eta(E)\subseteq{E}$ for any $E\subseteq{X}$;
- $\eta(\eta(E))=\eta(E)$ for any $E\subseteq{X}$;
- $\eta(A\cap{B})=\eta(A)\cap{\eta(B)}$ for any $A,B\subseteq{X}$.
So to demonstrate that $\kappa$ is a closure operetor I must demonstrate that:
- $\kappa(\varnothing)=\varnothing$;
- $E\subseteq\kappa(E)$ for any ${E}\subseteq{X}$;
- $\kappa(\kappa(E))=\kappa(E)$ for any ${E}\subseteq{X}$;
- $\kappa(A\cup{B})=\kappa(A)\cup\kappa(B)$ for any $A,B\subseteq{X}$.
Howewer first it seems to me that $\kappa(\varnothing)=X\setminus\eta(\varnothing)=X\setminus\varnothing=X\neq\varnothing$ and then I can't prove the other points so I only see that
- $\eta(E)\subseteq{E}\Rightarrow{X\setminus{E}}\subseteq{X\setminus\eta(E)}=\kappa(E)$;
- $\kappa(\kappa(E))=\kappa(X\setminus\eta(E))=X\setminus\eta(X\setminus\eta(E))$;
- $\kappa(A\cup{B})=X\setminus\eta(A\cup{B})$.
Could someone help me?
Furthermore how to demonstrate that the identity $$ \operatorname{int}E=\eta(E) $$ holds?