We know that the derivate of the function $f(x)=x^n$ with $n\in \Bbb R$ is:
$$f'(x)=\frac{df}{dx}=nx^{n-1}\tag 1$$
To obtain the proof of the $(1)$ I use a known limit
$$\lim_{u\to 0}\frac{(1+u)^\lambda-1}{u}=\lambda \tag 2$$
In fact
$$\begin{aligned} \frac{df}{dx}&=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to 0}\frac{(x+h)^n-x^n}{h}\\ &=\lim_{h\to 0}\frac{x^n\left[\left(\frac{x+h}{x}\right)^n-1\right]}{h}=\lim_{h\to 0}\frac{x^n\left[\left(1+\frac{h}{x}\right)^n-1\right]}{h}\\ &\stackrel{(2)}{=}\lim_{h\to 0}\frac{\frac{x^n}{x}\left[\left(1+\frac{h}{x}\right)^n-1\right]}{\frac{h}{x}}=nx^{n-1} \end{aligned}$$
Is it possible that exist another proof based on a set of algebraic rules, writing the $(x+h)^n-x^n$ in another way?