$\sqrt{3x^2 + 2x + 5} + \sqrt{x^2-4x+5} = \sqrt{2x^2 - 2x + 2} + \sqrt{2x^2+8}$
My attempt :
All the equation inside sqrt has $D<0$. Let it be $\sqrt A + \sqrt B = \sqrt C + \sqrt D$
2 possibilities $$\sqrt A = \sqrt C \cap \sqrt B = \sqrt D$$ Find $x$ that match this condition. $\sqrt A = \sqrt C $ i get $x=-3 \cup x=-5$ $\sqrt B = \sqrt D $ i get $x=-3 \cup x=-1$ $$\sqrt A = \sqrt D \cap \sqrt B = \sqrt C$$ Find $x$ that match this condition. $\sqrt A = \sqrt D $ i get $x=-3 \cup x=1$ $\sqrt B = \sqrt C $ i get $x=-3 \cup x=1$
2 solutions.
Another posibility $\sqrt A + \sqrt B = \sqrt C + \sqrt D$ ${[\sqrt A + \sqrt B]}^2 = {[\sqrt C + \sqrt D]}^2$ This part is complicated.
Is there easier way to solve it?