I came upon a question and I'm stuck on solving it.
Does there exist any continuous function $f:\Bbb R^2\to \Bbb R$ such that $$f(x_1,y_1)=f(x_2,y_2)\iff x_1=x_2\quad,\quad y_1=y_2$$?
What if we drop the continuity constraint? (though, the function is better be well-defined)
Originally, this question comes from a physical background. If two inertial frames measure the 4-tuples $(\Delta x,\Delta y,\Delta z,\Delta t)$ and $(\Delta x',\Delta y',\Delta z',\Delta t')$, we have $$\begin{cases}\Delta x^2+\Delta y^2+\Delta z^2-c^2\Delta t^2=\Delta x'^2+\Delta y'^2+\Delta z'^2-c^2\Delta t'^2 &,\quad\text{Special Relativity}\\ \Delta x^2+\Delta y^2+\Delta z^2=\Delta x'^2+\Delta y'^2+\Delta z'^2\\\text{and} \\\Delta t=\Delta t' &,\quad\text{Classical Physics} \end{cases}$$ I am OK with special relativity, but about the the second equivalence, I wonder if a function $f$ is found such that $$f(\Delta x^2+\Delta y^2+\Delta z^2,c^2\Delta t^2)=f(\Delta x'^2+\Delta y'^2+\Delta z'^2,c^2\Delta t'^2)\\\iff \\ \Delta x^2+\Delta y^2+\Delta z^2=\Delta x'^2+\Delta y'^2+\Delta z'^2\\\text{and} \\\Delta t=\Delta t' $$