Hint: $\,b\mid a\,\Rightarrow\, a = bc.\,$ By hypothesis $\,c\,$ is nonunit so has at last $\rm\color{#c00}{one}$ prime factor. Counting primes in the unique prime factorization of $\,\color{#90f}a=\color{#0a0}b\,\color{#c00}c\,$ yields that $\, \color{#90f}n \ge \color{#0a0}m+\color{#c00}1 > m$.
Remark $ $ More generally in a UFD: $\rm \ a\mid b_1\cdots b_n \iff a = a_1\cdots a_n,\,$ $\rm\, a_1\mid b_1,\ldots, a_n\mid b_n.\,$ By induction we can extend this to Riesz refinement matrices which show how any two factorizations of an integer have a common refinement, e.g. if we have two factorizations $\rm\: a_1 a_2 = n = b_1 b_2 b_3\:$ then Schreier refinement implies that we can build the following refinement matrix, where the column labels are the product of the elements in the column, and the row labels are the products of the elements in the row
$$\begin{array}{c|ccc} &\rm b_1 &\rm b_2 &\rm b_3 \\
\hline
\rm a_1 &\rm c_{1 1} &\rm c_{1 2} &\rm c_{1 3}\\
\rm a_2 &\rm c_{2 1} &\rm c_{2 2} &\rm c_{2 3}\\
\end{array}$$
This implies the following common refinement of the two factorizations
$$ \begin{align}\rm a_1 a_2 &\rm =(c_{1 1} c_{1 2} c_{1 3}) (c_{2 1} c_{2 2} c_{2 3})\\ \rm = b_1 b_2 b_3 &\rm =(c_{1 1} c_{2 1}) (c_{1 2} c_{2 2}) (c_{1 3} c_{2 3})\end{align}$$