With the convention $\binom{x}{n}=x^{\,\underline {\,n\,} } /n!$, in the RHS $r+s+1$ shall be a non-negative integer.
We can then apply symmetry of the binomial to rewrite our identity as
$$
\sum\limits_{j = 0}^m {\left( \matrix{
r + j \cr
j \cr} \right)\left( \matrix{
s + j \cr
j \cr} \right)} = \sum\limits_j^{} {\left( \matrix{
m - j \cr
m - j \cr} \right)\left( \matrix{
r + j \cr
j \cr} \right)\left( \matrix{
s + j \cr
j \cr} \right)} = \sum\limits_{j = 0}^s {\left( \matrix{
r \cr
j \cr} \right)\left( \matrix{
s \cr
j \cr} \right)\left( \matrix{
m + r + s + 1 - j \cr
r + s + 1 \cr} \right)} = \sum\limits_j^{} {\left( \matrix{
r \cr
j \cr} \right)\left( \matrix{
s \cr
j \cr} \right)\left( \matrix{
m + r + s + 1 - j \cr
m - j \cr} \right)}
$$
i.e.:
$$ \bbox[lightyellow] {
\sum\limits_j^{} {\left( \matrix{
m - j \cr
m - j \cr} \right)\left( \matrix{
r + j \cr
j \cr} \right)\left( \matrix{
s + j \cr
j \cr} \right)} = \sum\limits_j^{} {\left( \matrix{
r \cr
j \cr} \right)\left( \matrix{
s \cr
j \cr} \right)\left( \matrix{
m + r + s + 1 - j \cr
m - j \cr} \right)}
\tag{1} }$$
A possible way to demonstrate it is by taking the ogf over $m$ as follows
For the LHS
$$
\eqalign{
& G_{\,a} (z) = \sum\limits_{0\, \le \,m} {\sum\limits_{j = 0}^m {\left( \matrix{
r + j \cr
j \cr} \right)\left( \matrix{
s + j \cr
j \cr} \right)z^{\;m} } } = \cr
& = \sum\limits_{0\, \le \,m} {\sum\limits_j^{} {\left( \matrix{
m - j \cr
m - j \cr} \right)\left( \matrix{
r + j \cr
j \cr} \right)\left( \matrix{
s + j \cr
j \cr} \right)z^{\;m} } } = \cr
& = \sum\limits_{0\, \le \,m} {\sum\limits_j^{} {\left( \matrix{
m - j \cr
m - j \cr} \right)z^{\;m - j} \left( \matrix{
r + j \cr
j \cr} \right)\left( \matrix{
s + j \cr
j \cr} \right)z^{\;j} } } = \cr
& = \left( {\sum\limits_{0\, \le \,m} {\left( \matrix{
m \cr
m \cr} \right)z^{\;m} } } \right)\left( {\sum\limits_{0\, \le \,m} {\left( \matrix{
r + j \cr
j \cr} \right)\left( \matrix{
s + j \cr
j \cr} \right)z^{\;j} } } \right) \cr
& = {1 \over {1 - z}}\sum\limits_{0\, \le \,k} {\left( \matrix{
r + j \cr
j \cr} \right)\left( \matrix{
s + j \cr
j \cr} \right)z^{\;j} } = \cr
& = {1 \over {1 - z}}\sum\limits_{0\, \le \,k} {{{\left( {r + 1} \right)^{\,\overline {\,k\,} } \left( {s + 1} \right)^{\,\overline {\,k\,} } } \over {1^{\,\overline {\,k\,} } }}{{z^{\;k} } \over {k!}}} = \cr
& = {1 \over {1 - z}}{}_2F_{\,1} \left( {\left. {\matrix{
{r + 1,s + 1} \cr
1 \cr
} \;} \right|\;z} \right) \cr}
$$
For the RHS
$$
\eqalign{
& G_{\,b} (r,s,z) = \sum\limits_{0\, \le \,m} {\sum\limits_j^{} {\left( \matrix{
r \cr
j \cr} \right)\left( \matrix{
s \cr
j \cr} \right)\left( \matrix{
r + s + 1 + m - j \cr
m - j \cr} \right)z^{\;m} } } = \cr
& = \sum\limits_{0\, \le \,m} {\sum\limits_j^{} {\left( \matrix{
r \cr
j \cr} \right)\left( \matrix{
s \cr
j \cr} \right)z^{\;j} \left( \matrix{
r + s + 1 + m - j \cr
m - j \cr} \right)z^{\;m - j} } } = \cr
& = \left( {\sum\limits_{0\, \le \,k} {\left( \matrix{
r \cr
k \cr} \right)\left( \matrix{
s \cr
k \cr} \right)z^{\;k} } } \right)\sum\limits_{0\, \le \,k} {\left( \matrix{
r + s + 1 + k \cr
k \cr} \right)z^{\;k} } = \cr
& = \left( {\sum\limits_{0\, \le \,k} {\left( \matrix{
r \cr
k \cr} \right)\left( \matrix{
s \cr
k \cr} \right)z^{\;k} } } \right){1 \over {\left( {1 - z} \right)^{\;r + s + 2} }} = \cr
& = {1 \over {\left( {1 - z} \right)^{\;r + s + 2} }}\sum\limits_{0\, \le \,k} {\left( \matrix{
r \cr
k \cr} \right)\left( \matrix{
s \cr
k \cr} \right)z^{\;k} } = \cr
& = {1 \over {\left( {1 - z} \right)^{\;r + s + 2} }}\sum\limits_{0\, \le \,k} {\left( { - 1} \right)^{\;k} \left( { - 1} \right)^{\;k} \left( \matrix{
k - r - 1 \cr
k \cr} \right)\left( \matrix{
k - s - 1 \cr
k \cr} \right)z^{\;k} = } \cr
& = {1 \over {\left( {1 - z} \right)^{\;r + s + 2} }}\sum\limits_{0\, \le \,k} {{{\left( { - r} \right)^{\,\overline {\,k\,} } \left( { - s} \right)^{\,\overline {\,k\,} } } \over {1^{\,\overline {\,k\,} } }}{{z^{\;k} } \over {k!}}} = \cr
& = {1 \over {\left( {1 - z} \right)^{\;r + s + 2} }}{}_2F_{\,1} \left( {\left. {\matrix{
{ - r, - s} \cr
1 \cr
} \;} \right|\;z} \right) \cr}
$$
The Euler transformation for the Hypergeometric gives
$$
{}_2F_{\,1} \left( {\left. {\matrix{
{ - r, - s} \cr
1 \cr
} \;} \right|\;z} \right) = \left( {1 - z} \right)^{\,1 + r + s} {}_2F_{\,1} \left( {\left. {\matrix{
{r + 1,s + 1} \cr
1 \cr
} \;} \right|\;z} \right)
$$
which completes the demonstration.
It is interesting to note that the sides in id. 1 are polynomials in $r,s$ of degree $m,m$.
Therefore the identity holds as well for real and even complex values of $r, \,s$.
Furthermore (I realized just now going through my notes on binomial identities) it can be straightly deduced from this other basic identity
$$ \bbox[lightyellow] {
\eqalign{
& \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,m} \right)\,} {( - 1)^{\,m - k} \left( \matrix{
x + y + 1 \cr
m - k \cr} \right)\left( \matrix{
x + k \cr
k \cr} \right)\left( \matrix{
y + k \cr
k \cr} \right)} = \left( \matrix{
x \cr
m \cr} \right)\left( \matrix{
y \cr
m \cr} \right)\quad \Leftrightarrow \cr
& \Leftrightarrow \quad \left( \matrix{
x + m \cr
m \cr} \right)\left( \matrix{
y + m \cr
m \cr} \right) = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,m} \right)} {\left( \matrix{
x \cr
k \cr} \right)\left( \matrix{
y \cr
k \cr} \right)\left( \matrix{
x + y + m - k \cr
m - k \cr} \right)} \quad \left| \matrix{
\;{\rm integer}\,m \hfill \cr
\,x,y \in C \hfill \cr} \right. \cr}
\tag{2} }$$
that is called Suranyi's formula in this paper, and demonstrated therein.
It has also been dealt with and demonstrated in this related post.
In fact, from the above we get
$$
\eqalign{
& \sum\limits_j^{} {\left( \matrix{
m - j \cr
m - j \cr} \right)\left( \matrix{
r + j \cr
j \cr} \right)\left( \matrix{
s + j \cr
j \cr} \right)} = \cr
& = \sum\limits_j^{} {\sum\limits_k {\left( \matrix{
m - j \cr
m - j \cr} \right)\left( \matrix{
r \cr
k \cr} \right)\left( \matrix{
s \cr
k \cr} \right)\left( \matrix{
r + s + j - k \cr
j - k \cr} \right)} } = \cr
& = \sum\limits_k^{} {\left( \matrix{
r \cr
k \cr} \right)\left( \matrix{
s \cr
k \cr} \right)\left( \matrix{
r + s + m + 1 - k \cr
m - k \cr} \right)} \cr}
$$