Let $ r>0 $ and $ f:[-r, r] \rightarrow \mathbb{R} $ be even, i. e. $ f(x)=f(-x) \ (x \in[-r, r]) . $
Show that for all $ a \in \mathbb{R} $ applies: $ \int \limits_{-r}^{r} \frac{f(x)}{1+\mathrm{e}^{a x}} d x=\int \limits_{0}^{r} f(x) d x $
Hint: Show that $ \frac{1}{1+\mu}+\frac{1}{1+\frac{1}{\mu}}=1$ $(\mu>0) $ and use the substitution rule.
My solution approach so far
$\frac{1}{1+\mu}+\frac{1}{1+\frac{1}{\mu}}=\frac{1}{1+\mu}+\frac{1}{\frac{\mu}{\mu}+\frac{1}{\mu}}=\frac{1}{1+\mu}+\frac{1}{\frac{\mu+1}{\mu}}=\frac{1}{1+\mu}+\frac{\mu}{\mu+1}=\frac{1+\mu}{1+\mu}=1$.
Should I substitute $\mu=e^{ax}$ now, or how do I continue? Thanks in advance!