Solve
$\tag C 91x\equiv 84\pmod{147}$
We begin by writing down two equations,
$\tag {A0} 91 \times 1 = 84 + \color{red}{(}7\color{red}{)}$
$\tag Z 91 \times 2 = 147 + \color{red}{(}35\color{red}{)}$
Observe that if we multiply $\text{(Z)}$ by $a$ and subtract it from $\text{(A0)}$ we can write
$\tag 1 \text{A1 = A0} + a \times \text{Z} : \quad 91 \times (1 +2a) = 84 + 147 a + \color{red}{(}7 + 35a\color{red}{)}$
For a solution to exist there must be a minimum positive integer $a$ such that
$\tag 2 7 + 35a = 91q \quad \text{ for some positive integer } q$
Dividing out the factor of $7$ from both sides of $\text{(2)}$ we see that $a$ = $5$ and $q=2$ (use $\text{modulo-}13$ calculations).
Substituting back into $\text{(1)}$,
$\tag 3 91 \times (1 +10) = 84 + 147 \times 5 + \color{red}{(}91 \times 2\color{red}{)}$
or
$\tag 4 91 \times 9 = 819$
So we have a particular solution, $9 \pmod {147}$.
Solving the homogeneous equation $91z\equiv 0\pmod{147}$ is easy - factor out $7$ and recall that $13 \times 13 \equiv 1 \pmod{21}$ - to conclude that $z \equiv 0 \pmod{21}$.
So the general solution to the congruence equation $\text{(C)}$ is
$\tag{ANS} x = 9 + z \quad \text{ where } z \equiv 0 \pmod{21}$