Finding $\displaystyle \lim_{a\rightarrow\infty}\int^{1}_{0}\frac{\arctan(ax)\cdot \ln(1+x)}{1+x^2}dx$
What I try put $x=\tan \theta\,$ and $\,dx=\sec^2\theta\, d\theta$
$$I=\lim_{a\rightarrow\infty}\int^{\frac{\pi}{4}}_{0}\arctan(a\cdot \tan\theta)\cdot \ln(1+\tan\theta)\,d\theta$$
How do I solve it? Help me please.