0

I tried solving $\lim_{x\to 0} \frac{\ln(1+4x) - 4x}{x^2}$ without L'Hopital like this:


$\lim_{x\to 0} \frac{\ln(1+4x)^{\frac {1}{4x}4x} - 4x}{x^2}$ = $\lim_{x\to 0} \frac{4x\ * \ln(e) - 4x}{x^2}$ = $\lim_{x\to 0} \frac{0}{x^2}$

and that is undetermined. And I have no other idea on how to solve it. Please help, and remember, WITHOUT L'Hopital rule. Solve just with simple limits manipulations, aka no Big O notations, series, integrals etc.

2 Answers2

3

replace $x$ by $-x$ & add then we get,

$2L=\lim_{x\to0}\dfrac{\ln(1-4x)+\ln(1+4x)}{x^2}=\lim_{x\to 0}\dfrac{\ln(1-16x^2)}{x^2}=-16\lim_{x\to 0}\dfrac{\ln(1-16x^2)}{-16x^2}\implies L=-8$

Gary
  • 31,845
1

Integrate $$ \frac{1}{{1 + t}} = 1 - t + \frac{{t^2 }}{{1 + t}} $$ from $0$ to $4x$ to obtain $$ \log (1 + 4x) = 4x - 8x^2 + \int_0^{4x} {\frac{{t^2 }}{{1 + t}}dt} \\ = 4x - 8x^2 + (4x)^3 \int_0^1 {\frac{{s^2 }}{{1 + 4xs}}ds} . $$ Hence $$ \frac{{\log (1 + 4x) - 4x}}{{x^2 }} = - 8 + 4^3 x\int_0^1 {\frac{{s^2 }}{{1 + 4xs}}ds} \to - 8 $$ as $x\to 0$.

Gary
  • 31,845