By symmetry, we can integrate over the solid angle in which $x$ is the minimal coordinate and multiply by $3$. The integration can be performed in spherical coordinates $x=\sin\theta\cos\phi$, $y=\sin\theta\sin\phi$ and $z=\cos\theta$:
\begin{eqnarray}
\frac3{4\pi}\int\limits_{x\lt\min(y,z)}x\,\mathrm d\Omega
&=&
\frac3{4\pi}\int_{\frac\pi4}^{\frac{5\pi}4}\int_0^{\operatorname{arccot}\cos\phi}\sin^2\theta\mathrm d\theta\cos\phi\mathrm d\phi
\\
&=&
\frac3{4\pi}\int_{\frac\pi4}^{\frac{5\pi}4}\frac12\left(\operatorname{arccot}\cos\phi-\frac{\cos\phi}{1+\cos^2\phi}\right)\cos\phi\mathrm d\phi
\\
&=&
-\frac3{4\sqrt2}
\\
&\approx&
-0.53033\;.
\end{eqnarray}
By symmetry, the mean value of the maximal Cartesian coordinate over the unit sphere is then $\frac3{4\sqrt2}$.