This is the full question:
$(X,d)$ be any arbitrary metric space. Let $S,T \subseteq X$. Prove or disprove the following:(if it's incorrect, what will be the correct statement?)
$1)S^o\cap T^o = (S\cap T)^o\,\,$ $\,\,2)S^o \cup T^o = (S\cup T)^o $
$3)$ $\overline{S\cap T}$ $\subseteq$ $\overline{S}\cap\overline{T}\,\,$ $\,\,4) \overline{S\cup T}$ = $\overline{S}\cup\overline{T}\,\,$ $\,\,5)$ $(S^o)^c = \overline{(S^c)}$
$6)$ $(S)^o = \left(\overline{S}\right)^o\,\,$ $\,\,7)$ $\overline{S} = \overline{\left(S^o\right)}\,\,$ $\,\,8)$ $\overline{S- T}$ = $\overline{S}-\overline{T}$
$9)$ If $(X,||.||)$ is a Norm Linear space then is it true that $\overline{S+ T}$ = $\overline{S}+\overline{T}$ ?
$1)$ is true. $S^o \subseteq S $ and $T^o \subseteq T $. This implies $S^o \cap T^o \subseteq S \cap T$, and since the interior of a set is the largest open set contained in it, we have $S^o \cap T^o \subseteq \left( S \cap T \right)^o$ $\subseteq S \cap T$. Also $S \cap T \subseteq S$ and $S \cap T \subseteq T$. This implies $\left(S \cap T\right)^o \subseteq S^o$ and $\left(S \cap T\right)^o \subseteq T^o$. Hence $\left(S \cap T\right)^o \subseteq S^o \cap T^o$. This finishes the proof of $1)$.
$2)$ is false, a counterexample will be $S=\mathbb{Q}$ and $T=\mathbb{Q^c}$ in $X=\mathbb{R}$. $\,S^o=\emptyset$, $T^o=\emptyset$ and $S \cup T =$ $\mathbb{R}$. It should be $S^o \cup T^o \subseteq (S\cup T)^o$. $S^o \subseteq S $ and $T^o \subseteq T $, so $S^o \cup T^o$ $\subseteq$ $S \cup T$. Which implies $\left( S^o \cup T^o \right)^o$ $=$ $ S^o \cup T^o$ $\subseteq$ $\left( S \cup T\right)^o$.
$3)$ is true. $S\cap T$ $\subseteq S$ and $S\cap T$ $\subseteq$ $T$. Which implies $\overline{S\cap T}$ $\subseteq$ $\overline{S}$ and $\overline{S\cap T}$ $\subseteq$ $\overline{T}$. Hence $\overline{S\cap T}$ $\subseteq$ $\overline{S}\cap\overline{T}$. This finishes proof of $3)$. It is not necessary that $\overline{S\cap T}$ $=$ $\overline{S}\cap\overline{T}$, counter example of $2)$ will work.
$4)$ I am not sure. $S$ $\subseteq S\cup T$ and $T$ $\subseteq S\cup T$. which implies $\overline{S}$ $\subseteq \overline{S\cup T}$ and $\overline{T}$ $\subseteq \overline{S\cup T}$, and hence $\overline{S}\cup\overline{T}$ $\subseteq$ $\overline{S\cup T}$. It seems to be false, but i am not able to find a counter example.
$6)$ and $7)$ are false. A counterexample would be $S =\mathbb{Q}$ in $X=\mathbb{R}$. I think the correct containments are $(S)^o$ $\subseteq$ $\left(\overline{S}\right)^o$ and $\overline{S}$ $\supseteq$ $\overline{\left(S^o\right)}$. Proof: $S \subset \overline{S}$ , which implies $S^o \subseteq \left(\overline{S}\right)^o$ $\subseteq$ $\overline{S}$. Also, $S^o \subseteq S$ hence $\overline{\left(S^o\right)}$ $\subseteq$ $\overline{S}$.
$8)$ is false. A counterexample will be $S=[0,1]$ and $T=[0,1)$ in $X=\mathbb{R}$. Will the correct containment be $\overline{S- T}$ $\supseteq$ $\overline{S}-\overline{T}$ ?
I am stuck with $5)$ and $9)$. Kindly check whether the above proofs and counterexamples are correct or not. Any alternate easy proofs will be great :).
Definition 1: A point $x \in X$ is called a limit point of $E\subseteq X$ if $B(x,r)\cap E \ne \emptyset $ $\,\forall\, r>0$.
Definition 2:(Closure of a set) Let $(X, d)$ be a metric space and $A\subset X$. Let $\overline{A}$ denote the set of all limit points of $A$. Thus $\overline{A}$ $= \{y \in X : $ For every $r > 0$, the set $B(y, r) \cap A \ne\emptyset \}$.
Definition 3(Interior of a set): Let $S\subset X$ be a subset of a metric space. We say that $x \in S$ is an interior point of $S$ if $\,\exists\,$ $r > 0$ such that $B(x, r) \subset S$ . The set of interior points of $S$ is denoted by $S^o$ and is called the interior of the set $S$