$A$ is an $m\times n$ matrix and $B$ is an $n\times m$ matrix. $$ \det(I_m + AB) = \det(I_n + BA) $$ Solution: I found this guys: $$ \det\begin{pmatrix}I&-B\\\\A&I\end{pmatrix} \det\begin{pmatrix}I&B\\\\0&I\end{pmatrix} =\det\begin{pmatrix}I&-B\\\\A&I\end{pmatrix}\begin{pmatrix}I&B\\\\0&I\end{pmatrix} =\det\begin{pmatrix}I&0\\\\A&AB+I\end{pmatrix} =\det(I+AB) $$
and
$$ \det\begin{pmatrix}I&B\\\\0&I\end{pmatrix} \det\begin{pmatrix}I&-B\\\\A&I\end{pmatrix} =\det\begin{pmatrix}I&B\\\\0&I\end{pmatrix} \begin{pmatrix}I&-B\\\\A&I\end{pmatrix} =\det\begin{pmatrix}I+BA&0\\\\A&I\end{pmatrix} =\det(I+BA) $$
Source: Sylvester's determinant identity