This is along the same lines as your approach using $\frac1{(k-1)k}=\frac1{k-1}-\frac1k$.
Preliminary Inequality
For $0\le a\le1$, we have
$$
\begin{align}
\frac1{(k-1)^a}-\frac1{k^a}
&=\frac{k^a-(k-1)^a}{((k-1)k)^a}\tag{1a}\\
&=\frac{1-\left(1-\frac1k\right)^a}{(k-1)^a}\tag{1b}\\
&\ge\frac{\frac{a}k}{(k-1)^a}\tag{1c}\\[3pt]
&\ge\frac{a}{k^{1+a}}\tag{1d}
\end{align}
$$
Explanation:
$\text{(1a):}$ combine fractions
$\text{(1b):}$ divide numerator and denominator by $k^a$
$\text{(1c):}$ Bernoulli's Inequality
$\text{(1d):}$ $k\gt k-1$
Thus,
$$
\frac1{k^{1+a}}\le\frac1a\left(\frac1{(k-1)^a}-\frac1{k^a}\right)\tag2
$$
Application of the Inequality
$$
\begin{align}
\sum_{k=1}^\infty\frac1{k^{1+a}}
&=1+\sum_{k=2}^\infty\frac1{k^{1+a}}\tag{3a}\\
&\le1+\frac1a\sum_{k=2}^\infty\left(\frac1{(k-1)^a}-\frac1{k^a}\right)\tag{3b}\\[2pt]
&=1+\frac1a\tag{3c}
\end{align}
$$
Explanation:
$\text{(3a):}$ pull out the $k=1$ term
$\text{(3b):}$ apply $(2)$
$\text{(3c):}$ Telescoping Series
Thus, the series converges for $a\gt0$.
Taking It To The Limit
In this answer it is shown that $\lim\limits_{a\to0}\left(\zeta(1+a)-\frac1a\right)=\gamma$, the Euler-Mascheroni Constant. This implies that
$$
\lim_{a\to0}\left(1+\frac1a-\sum_{k=1}^\infty\frac1{k^{1+a}}\right)=1-\gamma\tag4
$$