Does a Lebesgue-measurable Subset $M \subseteq \mathbb R$ exist, so that $\lambda^{1}(M \cap I)= \frac{1}{2}\lambda^{1}(I)$ for any bounded Interval $I\subseteq \mathbb R$.
My idea:
Assume that such a lebesgue-measurable set $M$ did exist, it then follows that for any $\epsilon > 0$ we can find $O_{\epsilon}$ open and $C_{\epsilon}$ closed so that $\lambda^{1}(O_{\epsilon} \setminus C_{\epsilon})< \epsilon$ and $C_{\epsilon} \subseteq M \subseteq O_{\epsilon}$
it then follows for arbitrary bounded sets $I$ that $\lambda^{1}(C_{\epsilon}\cap I)\leq \frac{1}{2} \lambda^{1}(I)\leq \lambda^{1}(O_{\epsilon}\cap I)$
I am struggling to find any contradictions that I can use. Any ideas?