Taking into account Jyrki's answer, I tried to collect the pieces. Please, have a look.
(1) By the first lines of his answer: If $[B:\Bbb{Q}]=2$, then
$$[E:\Bbb Q]=[E:B][B:\Bbb Q] \implies 42=[E:B]\cdot 2 \iff [E:B]=21=|\mathrm{Aut}(E/B)|.$$ Since $B=\Bbb Q(i\sqrt 7)=\langle1,i\sqrt 7\rangle$, we can see that $\theta(b)=\sigma^2(b)=b,\ \forall b\in B$. Hence,
$$\theta,\sigma^2 \in \mathrm{Aut}(E/B)\implies \langle \theta,\sigma^2 \rangle \subseteq \mathrm{Aut}(E/B).$$ But also we have $|\langle \theta,\sigma^2\rangle|=|\langle \theta\rangle | \cdot |\langle \sigma^2\rangle|=7 \cdot 3 =21=|\mathrm{Aut}(E/B)|$. Therefore, $$\mathrm{Aut}(E/B)=\langle \theta,\sigma^2\rangle.$$
(2) By the extras: We observe that
$$\theta(\omega+\omega^2+\omega^4)=\omega+\omega^2+\omega^4,\\
\sigma^2(\omega+\omega^2+\omega^4)=\dotsb =\omega+\omega^2+\omega^4, $$
so, $\omega+\omega^2+\omega^4 \in \mathrm{Fix}(\langle \theta,\sigma^2 \rangle) $.
Then, we have the tower of fields
$$\Bbb Q \leq B=\Bbb Q (\omega+\omega^2+\omega^4) \leq \mathrm{Fix}(\langle \theta,\sigma^2 \rangle).$$
But,
\begin{align*}
|G: \langle \theta,\sigma ^2 \rangle |=[\mathrm{Fix}(\langle \theta,\sigma^2\rangle):\Bbb Q] & \iff \frac{|G|}{|\langle \theta,\sigma^2\rangle|}=[\mathrm{Fix}(\langle \theta,\sigma^2\rangle):\Bbb Q] \\
& \iff \frac{42}{21}=[\mathrm{Fix}(\langle \theta, \sigma^2\rangle):\Bbb Q] \\
& \iff [\mathrm{Fix}(\langle \theta,\sigma^2\rangle):\Bbb Q]=2.
\end{align*}
So, $B=\Bbb Q$ or $B=\mathrm{Fix}(\langle \theta,\sigma^2\rangle)$. But $\omega+\omega^2+\omega^4 \notin \Bbb Q$. So,
$$B=\mathrm{Fix}(\langle \theta,\sigma^2\rangle) \implies [B:\Bbb Q]=2.$$ Therefore,
$$[E:\Bbb Q]=[E:B][B:\Bbb Q] \iff [E:B]=21 \iff |\mathrm{Aut}(E/B)|=21.$$
Now $[\underbrace{\Bbb Q(\omega+\omega^2+\omega^4)}_{B}:\Bbb Q]=2 < \infty \iff \omega+\omega^2+\omega^4$ is algebraic over $F$ and therefore it determines uniquely the basis of $B$. So, for showing that $\theta,\sigma^2 \in \mathrm{Aut}(E/B)$, it sufficies to show that $\theta,\sigma^2 $ leave $\omega+\omega^2+\omega^4$ fixed, and indeed that happens. So, $\langle \theta,\sigma^2 \rangle \subseteq \mathrm{Aut}(E/B)$. Also, like (1), $|\langle \theta,\sigma^2 \rangle|=21=|\mathrm{Aut}(E/B)|$ and eventually
$$\mathrm{Aut}(E/B)=\langle \theta,\sigma^2 \rangle,$$
as wanted.