The proof you are looking for will follow from the binomial theorem - or, more precisely, the derivative Bernoulli inequality, which says that
$$(1+h)^n \geq 1 + nh, \qquad h>0$$
Set $\sqrt[n]{x} = (\frac{1}{1+h})$ for $h > 0$. If you flip both sides of the Bernoulli inequality, you get
$$\left(\frac{1}{1+h}\right)^n \leq \frac{1}{1+nh}$$
So, substituting for $x$, $$ x \leq \frac{1}{1+nh} = \frac{1}{1+n(\frac{1}{\sqrt[n]{x}}-1)} $$
$$\therefore 1 + n(\frac{1}{\sqrt[n]{x}}-1) \leq \frac{1}{x} $$
$$\implies \frac{n}{\sqrt[n]{x}} \leq \frac{1}{x} + n-1 $$
$$\implies {\sqrt[n]{x}} \geq \frac{n}{n - 1 + \frac{1}{x}} = \frac{1}{1 + \frac{k}{n}}$$
where in the last step, we set $k$ s.t. $\frac{1}{x} = 1 + k$.
From this, we see that $1 \geq \sqrt[n]{x} \geq \frac{1}{1 + \frac{k}{n}}$, where $k$ is fixed. It follows that, as $n$ gets really big,
$$\lim_{n \to \infty} \sqrt[n]{x} = 1.$$