Let $n \in \Bbb N$ be fixed. Let $C_r = \binom n r\ $ for $0 \leq r \leq n.$ Evaluate $$C_0^2 + 3 C_1^2 + \cdots + (2n+1) C_n^2.$$
Any hint in this regard will be highly appreciated. Thank you very much.
Let $n \in \Bbb N$ be fixed. Let $C_r = \binom n r\ $ for $0 \leq r \leq n.$ Evaluate $$C_0^2 + 3 C_1^2 + \cdots + (2n+1) C_n^2.$$
Any hint in this regard will be highly appreciated. Thank you very much.
Using $k\binom{n}{k}=n\binom{n-1}{k-1}$ for $k>0$, and Chu-Vandermonde identity, \begin{align}\sum_{k=0}^{n}(2k+1)\binom{n}{k}^2&=2n\sum_{k=1}^{n}\binom{n-1}{k-1}\binom{n}{k}+\sum_{k=0}^{n}\binom{n}{k}^2\\&=2n\sum_{k=0}^{n-1}\binom{n-1}{k}\binom{n}{n-1-k}+\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}\\&=2n\binom{2n-1}{n-1}+\binom{2n}{n}=\color{blue}{(n+1)\binom{2n}{n}}.\end{align}
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\bbox[5px,#ffd]{}}$