Fixing an arbitrary $p$, can a function always be found which is $L^p$ but not $L^{p+1}$ or $L^{p-1}$ on $\mathbb{R}_{\geq0}$?
More generally, given a pair $\big(a,b\big)\in\mathbb{Z}_{\geq1}^2$, can a function $f$ always be found which is $L^p$ iff $p\in\big(a,b\big)$ or iff $p\in\big[a,b\big]$?