0

Prove for any vectors $\mathbf{a}$ and $\mathbf{b}$

(i) $|\mathbf{a}—\mathbf{b}|\ge|\mathbf{a}|—|\mathbf{b}|$

(ii) $|\mathbf{a} — \mathbf{b}|\ge |\mathbf{b}| — |\mathbf{a}|$

(iii) Deduce that $|\mathbf{a} — \mathbf{b}|\ge |\ |\mathbf{a}| — |\mathbf{b}|\ |$

I have drawn parallelograms for (i) and (ii) so I know what $|\mathbf{a} — \mathbf{b}|$ looks like but I cannot prove them.

I cannot even fathom out what (iii) means.

almagest
  • 18,380
Steblo
  • 1,153

0 Answers0