Prove for any vectors $\mathbf{a}$ and $\mathbf{b}$
(i) $|\mathbf{a}—\mathbf{b}|\ge|\mathbf{a}|—|\mathbf{b}|$
(ii) $|\mathbf{a} — \mathbf{b}|\ge |\mathbf{b}| — |\mathbf{a}|$
(iii) Deduce that $|\mathbf{a} — \mathbf{b}|\ge |\ |\mathbf{a}| — |\mathbf{b}|\ |$
I have drawn parallelograms for (i) and (ii) so I know what $|\mathbf{a} — \mathbf{b}|$ looks like but I cannot prove them.
I cannot even fathom out what (iii) means.