Let $f\in\mathbb Z[x]$ be a polynomial with integer coefficients, s.t. it takes the value $7$ for $4\;\text{distinct integers}$. Prove $f$ doesn't take the value $14$ for any integer input.
My attempt: $$f(\alpha)=f(\beta)=f(\gamma)=f(\delta)=7,\;\;\alpha\ne\beta\ne\gamma\ne\delta\in\mathbb Z$$ From the fact: $$\forall x,y\in\mathbb Z\;\;x\pm y\in \mathbb Z$$ $$g(x):=f(x)-f(\alpha)=f(x)-f(\beta)=f(x)-f(\gamma)=f(x)-f(\delta)$$ $$\implies g(x)=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)q(x)$$ Let $\varepsilon\in\mathbb Z$. $$f(\varepsilon)=14$$ By the above definition of $g(x)$, for $g(\varepsilon)$: $$g(\varepsilon)=(\varepsilon-\alpha)(\varepsilon-\beta)(\varepsilon-\gamma)(\varepsilon-\delta)q(\varepsilon)$$ $$\alpha\ne\beta\ne\gamma\ne\delta\ne\varepsilon\in\mathbb Z\implies\;(\varepsilon-\alpha)\ne(\varepsilon-\beta)\ne(\varepsilon-\gamma)\ne(\varepsilon-\delta)\in\mathbb Z$$ $14$ can be factorised by at most $4\;\text{distinct integers}$,e.g.: $$14=1\cdot(-1)\cdot(-2)\cdot7\leftarrow\;\text{one permutation}$$ Therefore,$f$ doesn't take the value $14$ for any integer input. Is this legitimate?