How to evaluate
$$I=\int_0^1\frac{\ln(1-x^2)}{x}\operatorname{Li}_2\left(\frac{1-x}{2}\right)\ dx\ ?$$
This integral was mentioned by @nospoon in the comments of this problem.
What I tried is integration by parts which gives
$$I=\frac12\int_0^1\frac{\operatorname{Li}_2(x^2)}{1-x}\ln\left(\frac{1+x}{2}\right)\ dx$$
Now if we use the following identity that can be found on page $95$ Eq $(4)$ of this paper
$$\sum_{n=0}^\infty(-1)^n(\overline{H}_n-\ln2)x^n=-\ln(2)+\sum_{n=1}^\infty(-1)^n(\overline{H}_n-\ln2)x^n=\frac{\ln\left(\frac{1+x}{2}\right)}{1-x}$$
and multiply both sides by $\large \frac{\operatorname{Li}_2(x^2)}{x}$ then $\int_0^1$, we obtain
$$\int_0^1\frac{\operatorname{Li}_2(x^2)}{x(1-x)}\ln\left(\frac{1+x}{2}\right)\ dx=-\frac12\ln2\zeta(3)+\sum_{n=1}^\infty(-1)^n(\overline{H}_n-\ln2)\int_0^1 x^{n-1}\operatorname{Li}_2(x^2)\ dx$$
where
$$\int_0^1 x^{n-1}\operatorname{Li}_2(x^2)\ dx\overset{x^2\to x}{=}\frac12\int_0^1 x^{\frac n2-1}\operatorname{Li}_2(x)\ dx=\frac12\left(\frac{2\zeta(2)}{n}-\frac{4H_{n/2}}{n^2}\right)$$
so
$$\int_0^1\frac{\operatorname{Li}_2(x^2)}{x(1-x)}\ln\left(\frac{1+x}{2}\right)\ dx=-\frac12\ln2\zeta(3)+\sum_{n=1}^\infty(-1)^n(\overline{H}_n-\ln2)\left(\frac{\zeta(2)}{n}-\frac{2H_{n/2}}{n^2}\right)$$
and since
$$\int_0^1\frac{\operatorname{Li}_2(x^2)}{x(1-x)}\ln\left(\frac{1+x}{2}\right)\ dx=\int_0^1\frac{\operatorname{Li}_2(x^2)}{x}\ln\left(\frac{1+x}{2}\right)\ dx+2I$$
therefore
$$I=-\frac14\ln2\zeta(3)+\frac12\color{blue}{\sum_{n=1}^\infty(-1)^n(\overline{H}_n-\ln2)\left(\frac{\zeta(2)}{n}-\frac{2H_{n/2}}{n^2}\right)}-\frac12\underbrace{\int_0^1\frac{\operatorname{Li}_2(x^2)}{x}\ln\left(\frac{1+x}{2}\right)\ dx}_{\text{manageable}}$$
any idea how to evalute the blue sum? I think I made it more complicated. Any other ideas?
Thank you.