*I cant use LHopital
I try to calculate: $$\displaystyle \lim_{x \to 0^-}xe^{\frac{1}{x}}$$
i found this: Evaluation of $ \lim_{x\rightarrow \infty}\frac{\ln (x)}{x}$ using Squeeze theorem
But it doesnt help, i cant use series.
Someone gave me an idea like this, but still im stuck:
define t = $e^{\frac{1}{x}} \Rightarrow \ln t = \frac{1}{x} \Rightarrow x = \frac{1}{\ln t}$
Therefore we get:
$$\displaystyle \lim_{x \to 0^-}xe^{\frac{1}{x}} = \displaystyle \lim_{t \to 0}\frac{t}{\ln t}$$
Now what?
Or maybe there is another way?