0

*I cant use LHopital

I try to calculate: $$\displaystyle \lim_{x \to 0^-}xe^{\frac{1}{x}}$$

i found this: Evaluation of $ \lim_{x\rightarrow \infty}\frac{\ln (x)}{x}$ using Squeeze theorem

But it doesnt help, i cant use series.

Someone gave me an idea like this, but still im stuck:

define t = $e^{\frac{1}{x}} \Rightarrow \ln t = \frac{1}{x} \Rightarrow x = \frac{1}{\ln t}$

Therefore we get:

$$\displaystyle \lim_{x \to 0^-}xe^{\frac{1}{x}} = \displaystyle \lim_{t \to 0}\frac{t}{\ln t}$$

Now what?

Or maybe there is another way?

Alon
  • 1,647

2 Answers2

4

You can proceed directly: $$\lim_{x\to 0^-}\left(xe^{\frac 1x}\right)=\lim_{x\to 0^-}x\cdot \lim_{x\to 0^-}e^{\frac 1x}=0\cdot 0=0 $$ Note that $\frac 1x\to -\infty$ as $x\to 0^-$.

bjorn93
  • 6,787
0

HINT: note that $$ \lim_{x\to 0^-}e^{1/x}=\lim_{y\to -\infty }e^{y} $$

Masacroso
  • 30,417