Let $(X,\mathcal D)$ be a Hausdorff uniform space and for each Hausdorff uniformity $\mathcal U$ on $X$, $$\mathcal U \subseteq\mathcal D\to \mathcal U =\mathcal D$$
Is $(X,\mathcal D)$ compact?
Let $(X,\mathcal D)$ be a Hausdorff uniform space and for each Hausdorff uniformity $\mathcal U$ on $X$, $$\mathcal U \subseteq\mathcal D\to \mathcal U =\mathcal D$$
Is $(X,\mathcal D)$ compact?
No.
The following are equivalent for a Tychonov space $X$:
See Shirota On systems of structures of a completely regular space Osaka Math. J. Volume 2, Number 2 (1950), 131-143.