0

Series $$\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^n\cdot\left(\frac{n+1}{n}\right)^{n^2}$$

I tried Abel, Dirichlet theorems and it seems like divergent series but I don’t know the series a can compare to (for proving of divergence)

//i’m sorry that I can’t post images cuz due to reputation, this is my first question :>

saulspatz
  • 53,131
gladozya
  • 61
  • 7

2 Answers2

2

Use https://en.m.wikipedia.org/wiki/Root_test

to find $$\dfrac13\cdot \lim_{n\to\infty}\left(1+\dfrac1n\right)^n=\dfrac e3<1$$

  • Thanks so much, i forgot to put 1/n to 1/3 :D – gladozya Jan 15 '20 at 14:31
  • It is not necessary for the proof of convergence but $\lim\limits_{n\to\infty}\dfrac{\left(1+\frac1n\right)^{n^2}/3^n}{e^n/3^n} = \dfrac{1}{\sqrt{e}}$ – Henry Jan 15 '20 at 14:36
0

$0 < (1/3)^n[(1+1/n)^n]^n <$

$(1/3)^ne^n=(e/3)^n=:a^n$, where $a<1$.

$\sum a^n$ is convergent, now use comparison test.

Used: $(1+1/n)^n$ is increasing, bounded from above by $e$.

Recall: $\lim_{n\rightarrow \infty}(1+1/n)^n=e.$

Show that $\left(1+\dfrac{1}{n}\right)^n$ is monotonically increasing

Peter Szilas
  • 20,344
  • 2
  • 17
  • 28