Let $r_1=(a+b)(mod n )$ , $r_2=c(mod n) $ and $r_3=a(mod n) $.
Where $0\le r_1,r_2,r_3<n$
L. H. S. =$(a+b)(mod n) + c(mod n) $.
R. H. S. =$(a+(b+c)(mod n) )(mod n) $.
L. H. S. =$r_1 + r_2$.
$r_1=(a+b)(mod n) . r_2=c(mod n). r_1+r_2=(a+b+c)(mod n) $.
Now $n|((a+b+c)-a) (mod n). Now (a+b+c)-a =nk1+(r_1+r_2)-nk2-r_3$.
$R. H. S. =(a +(a+b+c-a)(mod n) )(mod n) =( nk3+r_3+(r_2+r_1-r_3))(mod n) =(r_1+r_2).$
Is my attempt correct?
\bmod
: soa\bmod n
produces $a\bmod n$. For the parenthetical equivalence relation, use\pmod{n}
. Soa\equiv b\pmod{n}
produces $a\equiv b\pmod{n}$. And again: they are not the same thing. – Arturo Magidin Jan 16 '20 at 04:24