$$ \int_0^{\pi/2}\frac{\cos 3x+1}{\cos 2x-1}dx $$
Set $t=\sin x\implies dt=\cos x.dx$ $$ \int_0^{\pi/2}\frac{\cos 3x+1}{\cos 2x-1}dx=\int_0^{\pi/2}\frac{4\cos^3x-3\cos x+1}{-2\sin^2x}dx\\ =-2\int_0^{\pi/2}\frac{(1-\sin^2x)\cos x}{\sin^2x}dx+\frac{3}{2}\int_0^{\pi/2}\csc x\cot x.dx-\frac{1}{2}\int_0^{\pi/2}\csc^2x.dx\\ =-2\int_0^{1}[t^{-2}-1]dt+\frac{3}{2}\int_0^{\pi/2}\csc x\cot x.dx-\frac{1}{2}\int_0^{\pi/2}\csc^2x.dx\\ =-2\Big[\frac{-1}{t}-t\Big]^1_0-\frac{3}{2}\Big[\csc x\Big]_0^{\pi/2}+\frac{1}{2}\Big[\cot x\Big]_0^{\pi/2} $$
How do I apply the limits here as $t\to0\implies\frac{1}{t}\to\infty$, similarly for $\cot x, \csc x$ etc ?
Note: Solution given in my reference1 is $1$