1

Evaluate $$ \int_0^{2\pi}x\sin^6x.\cos^5x.dx $$

Set $t=\sin x\implies dt=\cos x.dx$ $$ I=\int_0^{2\pi}(2\pi-x)\sin^6x.\cos^4x.\cos x.dx\\ 2I=2\pi\int_0^{2\pi}\sin^6x.(1-\sin^2x)^2.\cos x.dx\\ I=\pi\int_0^{2\pi}\sin^6x.(1-2\sin^2x+\sin^4x).\cos x.dx=\pi\int_0^{\color{red}{?}}[t^6-2t^8+t^{10}]dt $$ The solution given in my reference is $\dfrac{32\pi}{693}$ but if I set $x:0\to2\pi\implies t:0\to 0$, integral becomes zero, so what exactly should be the uper limit of the definite integral ?

Thanx @José Carlos Santos, $$ I=\pi\bigg[\int_0^{\pi/2}f(x)dx+\int_{\pi/2}^{3\pi/2}f(x)dx+\int_{\pi/2}^{2\pi}f(x)dx\bigg]\\ =\pi\Big[\int_0^{1}\big[\frac{t^7}{7}-\frac{2t^9}{9}+\frac{t^{11}}{11}\big]dt+\int_{1}^{-1}\big[\frac{t^7}{7}-\frac{2t^9}{9}+\frac{t^{11}}{11}\big]dt+\int_{-1}^{0}\big[\frac{t^7}{7}-\frac{2t^9}{9}+\frac{t^{11}}{11}\big]dt\Big]=0 $$ Even If I split the limits, seems like it still gives me $0$, how do I deal with it properly ?

Sooraj S
  • 7,573

3 Answers3

4

Note that your substitution is not working because the substitution rule works only for one-one functions, whereas $\sin x$ is not a one-one function in $(0,2\pi)$. Instead, use the fact that $$\int_0^{2a}f(x)dx=\int_0^af(x)+f(2a-x)dx$$ $$\implies I=\int_0^{2\pi}x\sin^6x\cos^5xdx$$ $$=\int_0^\pi(x+2\pi-x)\sin^6x\cos^5xdx$$ $$=2\pi\int_0^\pi\sin^6x\cos^5xdx$$ Again apply the same property and get $$I=2\pi\int_0^{\pi/2}\sin^6x\cos^5x-\sin^6x\cos^5xdx$$ $$=0$$

Martund
  • 14,706
  • 2
  • 13
  • 30
1

Hint

Applying the rule

$$\int_a^bf(x)dx = \int_a^bf(a+b-x)dx$$

$$I = \int_0^{2\pi}x\sin^6x\cos^5xdx = \int_0^{2\pi}(2\pi-x)\sin^6(2\pi-x)\cos^5(2\pi-x)dx$$

Using the fact that $\sin(2\pi-x) = -\sin x$ and $\cos(2\pi-x) = \cos x$

$$I = \pi\int_0^{2\pi}\sin^6x \cos^5x dx$$

1

In order to compute$$\int_0^{\pi/2}x\sin^x(x)\cos^5(x)\,\mathrm dx\tag1$$using the substitution that you mentioned, then, since, when $x$ goes from $0$ to $\frac\pi2$, $\sin(x)$ goes from $0$ to $1$, you get$$\int_0^1\arcsin(t)(t^6-2t^8+t^{10})\,\mathrm dt=\frac{4(-5\,156+3\,465\pi)}{2\,401\,245}.$$So, $(1)=\frac{4(-5\,156+3\,465\pi)}{2\,401\,245}$.

Now, using the same idea in order to compute$$\int_{\pi/2}^{3\pi/2}x\sin^x(x)\cos^5(x)\,\mathrm dx,$$what you get is$$\int_1^{-1}\bigl(\pi-\arcsin(t)\bigr)(t^6-2t^8+t^{10})\,\mathrm dt=-\frac{16\pi}{693}.$$Can you take it from here?