My attempt:
$ax+by=d$(as gcd(a,b)=d).
Dividing by c
$\frac{a}{c}x+\frac{b}{c}y=\frac{d}{c}$
Let $k$ be the gcd of$ (\frac{a}{c},\frac{b}{c})$ so $k|\frac{a}{c}$ and $ k|\frac{b}{c}$ then $k|\frac{a}{c} x + \frac{b}{c}y$ and so $k|\frac{d}{c}$.
As $d|a $ implies that $\frac{d}{c}|\frac{a}{c} $ similarly it divides $\frac{b}{c}$ . Hence $\frac{d}{c}|k$(as $k$ is the greatest common factor). Thus $k= \frac{d}{c}$
$$\begin{align} &\gcd(ca,cb) = d\ \iff\ &d\mid ca,cb\ \ &\ \exists x,y!:\ cax+cby = d\ \iff\ &d/c\mid a,b\ \ &\ \ \exists x,y!:\ ax, +, by = d/c\ \iff\ &\gcd(a,b) = d/c\end{align}\qquad$$
– Bill Dubuque Jan 09 '20 at 19:48