$$\int_0^{\infty} \frac{\cos(kx)}{k^2 + a^2} dk$$
This equals to $\displaystyle\frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos(kx)}{k^2 + a^2} dk$ and I solved it, but the answer is not of exponential form. How do I evaluate this in exponential form?