I'm looking at a proof given here: https://math.stackexchange.com/a/1885829/666263
Specifically, this section:
III. Lemma (Knaster–Tarski Fixed Point Theorem). If a function $\varphi:P(A)\to P(A)$ satisfies the condition $$X\subseteq Y\implies\varphi(X)\subseteq\varphi(Y)$$ for all $X,Y\subseteq A,$ then $\varphi(S)=S$ for some $S\subseteq A.$
Proof. Let $\mathcal F=\{X:X\subseteq\varphi(X)\}$ and let $S=\bigcup\mathcal F.$ First note that, if $X\in\mathcal F,$ then $X\subseteq S$ and $X\subseteq\varphi(X)\subseteq\varphi(S).$ Since every member of $\mathcal F$ is a subset of $\varphi(S),$ it follows that $S=\bigcup\mathcal F\subseteq\varphi(S),$ that is, $S\in\mathcal F.$ From $S\in\mathcal F$ it follows that $\varphi(S)\in\mathcal F,$ whence $\varphi(S)\subseteq S,$ and so $\varphi(S)=S.$
In the proof, the author writes $\mathcal F=\{X:X\subseteq\varphi(X)\}$ and then $S=\bigcup\mathcal F$. and i'm unclear whether $S = \bigcup_{A \in \mathcal{F}} A$ or something else. In other words, i'm asking if given a set of sets $\mathcal{F}, $ $\bigcup\mathcal F$ is the union of all elements of $\mathcal{F}$ or something else?