I'm trying to understand if this way is correct always or not :
$a,b,c$ natural numbers
$b$ prime number
$a,c$ even number
if $\gcd (a,b)=1$
and we have
$c\equiv a\pmod{b}$
$\implies $ $\frac{c}{2}\equiv \frac{a}{2}\pmod{b}$
How I can understand and prove it ? Without using the Euclidean algorithm, because, I don't study $\frac{\mathbb{Z}}{p\mathbb{Z}}$
I know simple relations of modulo :
$c=b.k+c$ then $\frac{c}{2}=b\frac{k}{2}+\frac{a}{2} %only if a=c$
But may be $\frac{k}{2}\not\in\mathbb{N}$
My goal is to solve this :
$8n\equiv 1154\pmod{1163}$
So if we divide by $2$ we get
$4n\equiv 577\pmod{1163}$
$$4n\equiv 1740\pmod{1163}$$ Then
$$2n\equiv 870\pmod{1163}$$
Then
$$n\equiv 435\pmod{1163}$$ ( correct answer )
For example :
$20\equiv 1\pmod{19}$
$20\equiv 20\pmod{19}$
Then $10\equiv 10\pmod{19}$
Correct
So what's the proof ?