I have to find the Jordan basis of the following matrix:
$$A=\begin{pmatrix} 2&0&-1&1\\ 1&1&-1&1\\ 1&-3&2&-1\\ 0&-3&2&-1\\ \end{pmatrix} $$
I computed the characteristic polinomial $P_A(t)=(t-1)^4$
I'll just skip the calculations and state what I found, I got (${\lambda_1=1}$): $$\dim(V_{\lambda_1})=\dim(\ker(A-\lambda_1I))=2$$$$V_{\lambda_1}^2=\ker((A-\lambda_1I)^2)=Span\left(\begin{pmatrix} 0\\ 1\\ 0\\ 0\\ \end{pmatrix}\begin{pmatrix} 1\\ 0\\ 1\\ 0\\ \end{pmatrix}\begin{pmatrix} -1\\ 0\\ 0\\ 1\\ \end{pmatrix}\right)$$$$V_{\lambda_1}^3=\mathbb{R^4}$$ Therefore for my Jordan basis: $$v_3\in V_{\lambda_1}^3/V_{\lambda_1}^2$$ So I choose $v_3=\begin{pmatrix} 0\\ 0\\ 0\\ 1\\ \end{pmatrix} $
Then I calculated $v_2$ as $v_2=(A-\lambda_1I)v_3$ and $v_1$ as $v_1=(A-\lambda_1I)^2v_3$.
I got $$v_2=\begin{pmatrix} 1\\ 1\\ -1\\ -2\\ \end{pmatrix},\;\;v_1=\begin{pmatrix} 0\\ 0\\ -1\\ -1\\ \end{pmatrix}$$ Indeed these 3 vectors are fine. (I checked by computing) When I have to choose the last vector $v_4$ (i.e. the one associated with the Jordan block of order 1) I'm not sure how to procede, I read on some notes that I should choose $v_4 \in V_{\lambda_1}^3/span(v_1,v_2,v_3)$ but that doesn't really seam to work...
The method presented in my textbook is somewhat unclear and I couldn't find anywhere a good explaination on a canonical method to follow when looking for the Jordan Basis of a matrix...