\begin{align}
f\big(\boldsymbol x^{k+1} \big) = f\big(\boldsymbol x^k - \alpha_k \boldsymbol g^{k}\big) &= \frac12 \big(\boldsymbol x^k - \alpha_k \boldsymbol g^{k}\big)^T Q \big(\boldsymbol x^k - \alpha_k \boldsymbol g^{k}\big) - \boldsymbol b^T \big(\boldsymbol x^k - \alpha_k \boldsymbol g^{k}\big) \\
&= \frac12 \big(\boldsymbol x^k\big)^T Q \boldsymbol x^k + \frac12 \alpha_k^2 \big(\boldsymbol g^{k}\big)^T Q \boldsymbol g^{k} - \alpha_k \big( \boldsymbol g^k \big)^T Q \boldsymbol x^{k} - \boldsymbol b^T \boldsymbol x^k + \alpha_k\boldsymbol b^T \boldsymbol g^{k} \\
&= f\big(\boldsymbol x^k \big) + \frac12 \alpha_k^2 \big(\boldsymbol g^{k}\big)^T Q \boldsymbol g^{k}- \alpha_k \big( \boldsymbol g^k \big)^T Q \boldsymbol x^{k} + \alpha_k \big( \boldsymbol g^{k}\big)^T \boldsymbol b\\
&= f\big(\boldsymbol x^k \big) + \frac12 \alpha_k^2 \big(\boldsymbol g^{k}\big)^T Q \boldsymbol g^{k}- \alpha_k \big( \boldsymbol g^k \big)^T \Big[Q \boldsymbol x^{k} - \boldsymbol b\Big] =: h(\alpha_k).
\end{align}
Assuming a fixed $\boldsymbol x^{k}$, $h(\alpha_k) $ is essentially a univariate, scalar parabola with unique minimum (recall that this is what we want) at $h'(\alpha_k) = 0$. Performing the derivative, one obtains
\begin{align}
0 &\overset{!}{=} \alpha_k \big( \boldsymbol g^k \big)^T Q \boldsymbol g^{k}- \big( \boldsymbol g^k \big)^T \Big[Q \boldsymbol x^{k} - \boldsymbol b\Big] \\
\Rightarrow \alpha_k &= \frac{ \big( \boldsymbol g^k \big)^T \Big[Q \boldsymbol x^{k} - \boldsymbol b\Big]}{\big( \boldsymbol g^k \big)^T Q \boldsymbol g^{k}}.\end{align}
This assumes that $\boldsymbol g^k \neq \boldsymbol 0$, i.e., we are not yet at the minimum and thus the denominator is due to $Q$ being s.p.d. nonzero.
By definition of $f\big(\boldsymbol x^k\big)$, $$\nabla f\big(\boldsymbol x^k\big) = Q \boldsymbol x^k - \boldsymbol b$$
and thus
\begin{align}
\alpha_k &= \frac{ \big( \boldsymbol g^k \big)^T \boldsymbol g^k}{\big( \boldsymbol g^k \big)^T Q \boldsymbol g^{k}}\end{align}
as desired.