I prooved that the Dirac distribution $\delta_{0}$ is in the Sobolev space $H^{s}\left(\mathbf{R}^{n}\right)=\left\{f \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)\left|\left(1+|\xi|^{2}\right)^{s / 2} \mathcal{F} f \in L^{2}\left(\mathbf{R}^{n}\right)\right\}\right.$ for every $s<-n / 2$
but I steel wrestling to proof that the Heaviside distribution $H$
$\forall x \in \mathbb{R}, H(x)=\left\{\begin{array}{lll}{0} & {\text { si }} & {x<0} \\ {1} & {\text { si }} & {x \geq 0}\end{array}\right.$
Doesn't belong to any Sobolev space $H^{s}(\mathbb{R})$, could you elaborate on that?
Thanks in advance!