Q: Is $\ln(\pi(e^x))\sim x?$
$\DeclareMathOperator{\Li}{Li}$ $\pi(x)$ is the prime counting function. Here's my attempt.
I think to prove or disprove this, I have to show whether or not $$ \lim_{x\to \infty} \frac{\ln(\pi(e^x))}{x}=1.$$
Since $$ \ln(\pi(e^x)) \sim \ln(\Li(e^x)) $$ I will substitute that into the limit:
$$ \lim_{x\to \infty} \frac{\ln(\Li(e^x))}{x}. $$
Now I'll use L'Hopitals rule repeatedly because we have some forms of $\frac{\infty}{\infty}.$
$$ \lim_{x\to\infty} \frac{e^x}{x\Li(e^x)}=\lim_{x\to \infty} \frac{e^x}{\Li(e^x)+e^x}=\lim_{x\to \infty} \frac{e^x}{e^x\left(1+\frac{1}{x}\right)}=\lim_{x\to \infty}\frac{1}{1+\frac{1}{x}}=1. $$
Is this correct?