1

If a function $f$ is Riemann-integrable on a compact interval $[a,b]$, must it be of bounded variation ?

Ewan Delanoy
  • 61,600

1 Answers1

6

No, $[0,1] \ni t \mapsto \begin{cases} 0, & t=0, \\ t \sin(1/t), & t >0, \end{cases}$ is continuous, so it is Riemann-integrable, but it is not of bounded variation.

Thomas
  • 1,971