The claim is true for $n \ge 3$. As observed in the comments above it is false for $n = 1$ and $n = 2$.
We can apply Legendre's Formula in its alternate form for $p=2$:
$$\nu_2(n!)=n-s_2(n)$$
where $\nu_2(n)$ is the exponent of the largest power of $2$ that divides $n$ and $s_2(n)$ is the sum of the digits in the binary representation of $n$.
We will use the following facts for $a$ and $b$ positive integers:
- $s_2(a+b) \le s_2(a) + s_2(b)$: it can be shown for example using Legendre's formula for $a+b \choose b$: $0 \le \nu_2({a+b \choose b}) = a+b-s_2(a+b)-b +s_2(b)-a+s_2(a)$;
- $s_2(2a) = s_2(a)$;
- $s_2(2a+1) = s_2(a)+1$;
- $(eq. 1)$ $\nu_2((3n)!)-\nu_2(n!)-\nu_2((n+1)!)-\nu_2((n+2)!)=3n-s_2(3n)-n+s_2(n)-n-1+s_2(n+1)-n-2+s_2(n+2)=s_2(n)+s_2(n+1)+s_2(n+2)-3-s_2(3n)$
We divide the problem for $n$ even and odd:
1. $n = 2k+1$, $k \ge 1$
$$s_2(n)=s_2(2k+1)=s_2(k)+1$$
$$s_2(n+1)=s_2(2k+2)=s_2(2(k+1))=s_2(k+1)$$
$$s_2(n+2)=s_2(2k+3)=s_2(2(k+1)+1)=s_2(k+1)+1$$
$$s_2(3n)=s_2(6k+3)=s_2(2(3k+1)+1)=s_2(3k+1)+1=s_2(k+1+2k)+1 \le s_2(k+1)+s_2(2k)+1=s_2(k+1)+s_2(k)+1$$
and putting them together ($(eq. 1)$) it is enough to show that:
$$s_2(k)+2s_2(k+1)+2-3 \ge s_2(k+1) + s_2(k) + 1$$
i.e. $s_2(k+1) \ge 2$, which is true except for $k=2^m-1$, $m \ge 1$. In that case $n=2^{m+1}-1$ and:
$$s_2(n)=m+1$$
$$s_2(n+1)=1$$
$$s_2(n+2)=2$$
$$s_2(3n)=s_2(3 \cdot (2^{m+1}-1))=s_2(2^{m+2}+2^{m+1}-4+1)=s_2(2^{m+2}+4 \cdot (2^{m-1}-1)+ 1)= 1+m-1+1 = m+1$$
and combining them we need to show that:
$$m+4-3 \ge m+1$$
which is true.
2. $n = 2k$, $k \ge 2$
$$s_2(n)=s_2(2k)=s_2(k)$$
$$s_2(n+1)=s_2(2k+1)=s_2(2k)+1=s_2(k)+1$$
$$s_2(n+2)=s_2(2k+2)=s_2(2(k+1))=s_2(k+1)$$
$$s_2(3n)=s_2(6k)=s_2(3k)=s_2(2k+k) \le s_2(2k)+s_2(k) = 2 s_2(k)$$
and putting them together ($(eq. 1)$) it is enough to show that:
$$2s_2(k)+1+s_2(k+1)-3 \ge 2s_2(k)$$
i.e. again $s_2(k+1) \ge 2$, which is true except for $k=2^m-1$, $m \ge 2$. In that case $n=2^{m+1}-2$ and:
$$s_2(n)=s_2(2^{m+1}-2)=s_2(2^m-1)=m$$
$$s_2(n+1)=s_2(2^{m+1}-1)=m+1$$
$$s_2(n+2)=s_2(2^{m+1})=1$$
$$s_2(3n)=s_2(3 \cdot (2^{m+1}-2))=s_2(3 \cdot (2^{m}-1))=s_2(2^{m+1}+2^{m}-4+1)=s_2(2^{m+1}+4 \cdot (2^{m-2}-1)+ 1)= 1+m-2+1 = m$$
and combining them we need to show that:
$$2m+2-3 \ge m$$
i.e.
$$m \ge 1$$
which is true.
See also this linked question.