Problem
Prove that the $\mathrm{ord}_{mn}a = [\mathrm{ord}_ma, \mathrm{ord}_na]$ where $a, m, n$ are relatively prime.
My attempt was,
Let $x = \mathrm{ord}_ma$, $y = \mathrm{ord}_na$, and $z = \mathrm{ord}_{mn}a$.
By definition of order, we have
$a^x \equiv 1 \pmod{m}$ and $a^y \equiv 1 \pmod{n}$ which implies $(a^{x})^y \equiv 1 \pmod{m}$, and $(a^y)^x \equiv 1 \pmod{n}$. Hence, $a^{xy} \equiv 1 \pmod{m}$ and $a^{xy} \equiv 1 \pmod{n}$. Furthermore, we have $a^{xy}, m, n$ are pairwise relatively prime. Therefore, $a^{xy} \equiv 1 \pmod{mn}$. So if $z$ is the order of $a$ modulo $mn$, then $z$ is the smallest integer such that $a^z \equiv 1 \pmod{mn}$. On the other hand, $z|(xy)$ because $a^{xy} \equiv 1 \pmod{mn}$, which implies $xy = z \cdot k$ for some integers $k$. Next, to satisfy the smallest value that divides $xy$, $k$ must be the greatest common divisor of $x, y$. Hence $z = \dfrac{xy}{(x,y)} = [x,y] \text{ } \square$.
Am I in the right track? Any feedback would be greatly appreciated.
Thank you