Can somebody help me on this problem? Thank you!
Show that $GL_{n}(\mathbb{Z})$ and $GL_{n+1}(\mathbb{Z})$ are not isomorphic $\forall n \geq 2$.
My approach:
I tried to create an isomorphism $f : GL_n(\mathbb{Z}) \to GL_{n+1}(\mathbb{Z}), f(X) = Y (X \in GL_n(\mathbb{Z}) \text{ and } Y \in GL_{n+1}(\mathbb{Z})$ but idk how to get a contradiction..