Let $\|\cdot\|: H\to \mathbb{R}$ be a norm in a complex Banach space $H$ which fulfills for all $x,y\in H$ the parallelogram law
\begin{align*}
\|x+y\|^2+\|x-y\|^2=2\left(\|x\|^2+\|y\|^2\right)\tag{1}
\end{align*}
We show the map $\alpha:H\times H\to\mathbb{C}$ defined by
\begin{align*}
\alpha(x,y)= \frac{1}{4} \left\{\|x + y\|^2 - \|x-y\|^2 + i\|x + iy\|^2 -i\|x-iy\|^2 \right\}\tag{2}
\end{align*}
fulfills for all $x,y,z \in H$ and $c\in\mathbb{C}$
\begin{align*}
c\alpha(x,y)=\alpha(cx,y)\tag{3}
\end{align*}
Let $x,y,z\in H$. We have
\begin{align*}
&\color{blue}{\alpha(x,y)+\alpha(z,y)}\\
&\qquad=\frac{1}{4}\left\{\|x+y\|^2-\|x-y\|^2+i\|x+iy\|^2-i\|x-iy\|^2\right.\\
&\qquad\qquad\quad\left.+\|z+y\|^2-\|z-y\|^2+i\|z+iy\|^2-i\|z-iy\|^2\right\}\tag{4}\\
&\qquad=\frac{1}{4}\left\{
\left\|\left(\frac{x+z}{2}+y\right)+\frac{x-z}{2}\right\|^2+\left\|\left(\frac{x+z}{2}+y\right)-\frac{x-z}{2}\right\|^2\right.\\
&\qquad\qquad\quad\left.-\left\|\left(\frac{x+z}{2}-y\right)+\frac{x-z}{2}\right\|^2+\left\|\left(\frac{x+z}{2}-y\right)-\frac{x-z}{2}\right\|^2\right.\\
&\qquad\qquad\quad+i\left\|\left(\frac{x+z}{2}+iy\right)+\frac{x-z}{2}\right\|^2+i\left\|\left(\frac{x+z}{2}+iy\right)-\frac{x-z}{2}\right\|^2\\
&\qquad\qquad\quad\left.-i\left\|\left(\frac{x+z}{2}-iy\right)+\frac{x-z}{2}\right\|^2+i\left\|\left(\frac{x+z}{2}-iy\right)-\frac{x-z}{2}\right\|^2\right\}\tag{5}\\
&\qquad=\frac{1}{2}\left\{\left\|\frac{x+z}{2}+y\right\|^2+\left\|\frac{x-z}{2}\right\|^2
-\left\|\frac{x+z}{2}-y\right\|^2-\left\|\frac{x-z}{2}\right\|^2\right.\\
&\qquad\qquad\quad\left.+i\left\|\frac{x+z}{2}+iy\right\|^2+i\left\|\frac{x-z}{2}\right\|^2
-i\left\|\frac{x+z}{2}-iy\right\|^2-i\left\|\frac{x-z}{2}\right\|^2\right\}\tag{6}\\
&\qquad\,\,\color{blue}{=2\alpha\left(\frac{x+z}{2},y\right)}\tag{7}
\end{align*}
Comment:
In (4) we use the definition of $\alpha$ from (2).
In (5) we do some preparatory work in order to apply the parallelogram law.
In (6) we apply the parallelogram law (1).
Since we have from (2)
\begin{align*}
\alpha(x,0)&=\frac{1}{4} \left\{\|x\|^2 - \|x\|^2 + i\|x\|^2 -i\|x\|^2 \right\}=0
\end{align*}
we obtain by substituting $z=0$ in (7)
\begin{align*}
\alpha(x,y)=2\alpha\left(\frac{x}{2},y\right)\tag{8}
\end{align*}
We obtain from (7) and (8) by induction that for all $n,m\in\mathbb{N}_0$:
\begin{align*}
2^{-n}m\alpha(x,y)=\alpha\left(2^{-n}m x,y\right)
\end{align*}
Case $c\geq 0$:
If $c \geq 0$, then we have numbers $c_k=2^{-n(k)}m(k)$ such that $c_k\to c$ as $k\to \infty$. Since the norm $\|\cdot\|$ fulfills for all $x,y\in H$:
\begin{align*}
\left|\|x\|-\|y\|\right|\leq \|x\pm y\|
\end{align*}
it follows
\begin{align*}
&\left|\|c_kx\pm y\|-\|cx\pm y\|\right|\leq \left|c_k-c\right|\|x\|\\
&\left|\|ic_kx\pm y\|-\|icx\pm y\|\right|\leq \left|c_k-c\right|\|x\|\\
\end{align*}
and we obtain
\begin{align*}
\alpha\left(c_kx,y\right)\to\alpha(cx,y)\qquad \text{as }k\to\infty
\end{align*}
We conclude
\begin{align*}
\color{blue}{c\alpha(x,y)}=\lim_{k\to\infty}c_k\alpha(x,y)=\lim_{k\to\infty}\alpha\left(c_kx,y\right)\color{blue}{=\alpha(cx,y)}
\end{align*}
Case $c\in\mathbb{R}$:
Since
\begin{align*}
\color{blue}{\alpha(-x,y)}&=\frac{1}{4} \left\{\|-x + y\|^2 - \|-x-y\|^2 + i\|-x + iy\|^2 -i\|-x-iy\|^2 \right\}\\
&=-\frac{1}{4} \left\{-\|x - y\|^2 + \|x+y\|^2 - i\|x - iy\|^2 +i\|x+iy\|^2 \right\}\\
&\,\,\color{blue}{=-\alpha(x,y)}
\end{align*}
we have $\alpha(cx,y)=c\alpha(x,y)$ for all $c \in \mathbb{R}$.
Case $c\in\mathbb{C}$:
Since
\begin{align*}
\color{blue}{\alpha(ix,y)}&=\frac{1}{4} \left\{\|ix + y\|^2 - \|ix-y\|^2 + i\|ix + iy\|^2 -i\|ix-iy\|^2 \right\}\\
&=\frac{i}{4} \left\{-i\|x - iy\|^2 + i\|x+iy\|^2 +\|x +y\|^2 -\|x-y\|^2 \right\}\\
&\,\,\color{blue}{=i\alpha(x,y)}
\end{align*}
we have $\alpha(cx,y)=c\alpha(x,y)$ for all $c \in \mathbb{C}$ and the claim (3) follows.
Note: This post follows closely the proof provided in section 1.2 of Linear Operators in Hilbert Spaces by J. Weidmann.