Let $f:(a-\epsilon,a+\epsilon)\to(0,\infty).$
If $$\lim \limits_{x \to a}\left(f(x)+\frac{1}{f(x)}\right)=2,$$ prove that $$\lim \limits_{x \to a}f(x)=1.$$
I'm trying to get something using $\epsilon-\delta$ definition but I'm stuck . How to use $(a-\epsilon,a+\epsilon)$ information I'm wondering .
$$~~$$ An answer