The solution is $$f(y)=\frac{2}{\pi}\frac{y}{1+y^2}$$ I will add the derivation soon.
Derivation:
Let
$$g(y)=
\begin{cases}
f(y)&&y\ge0 \\
0&&y<0
\end{cases}
$$
Then, with Euler's formula, we can rephrase the problem as
$$\int^\infty_{-\infty}g(y)\left(\frac{e^{ixy}-e^{-ixy}}{2i}\right)dy=e^{-x}$$
Equivalently,
$$\mathcal F\{g(y)\}(-x)-\mathcal F\{g(y)\}(x)=i\sqrt{\frac2\pi}e^{-x}$$
$$G(-x)=G(x)+i\sqrt{\frac2\pi}e^{-x}\qquad{x>0}$$
This functional equation does not tell much, as the solution is not unique. The best we can do is defining
$$G(x)=
\begin{cases}
\varphi (x) && x>0 \\
\varphi(-x)+i\sqrt{\frac2\pi}e^{x} && x<0
\end{cases}
$$
for some $\varphi (x):\mathbb R^+$ with sufficiently nice properties.
Then,
$$
\begin{align}
g(y)&=\frac{1}{\sqrt{2\pi}}\int^\infty_{-\infty}G(x)e^{ixy}dx \\
\sqrt{2\pi}g(y)&=\int^\infty_{0}G(x)e^{ixy}dx+\int^{\infty}_{0}G(-x)e^{-ixy}dx \\
&=\int^\infty_{0}\varphi(x)e^{ixy}dx+\int^{\infty}_{0}\left(\varphi(x)+i\sqrt{\frac2\pi}e^{-x}\right)e^{-ixy}dx \\
&=2\int^\infty_{0}\varphi(x)\cos(xy)dx+i\sqrt{\frac2\pi}\int^{\infty}_{0}e^{-x}e^{-ixy}dx \\
&=2\int^\infty_{0}\varphi(x)\cos(xy)dx+i\sqrt{\frac2\pi}\frac1{1+iy} \\
g(x)&=\sqrt{\frac2\pi}\int^\infty_{0}\varphi(x)\cos(xy)dx+\frac i\pi\frac1{1+iy} \\
\end{align}
$$
Let $a>0$. By assumption, $g(-a)=0$. Therefore,
$$\sqrt{\frac2\pi}\int^\infty_{0}\varphi(x)\cos(ay)dx+\frac i\pi\frac1{1-ia}=0$$
Then,
$$\begin{align}
g(a)&=\sqrt{\frac2\pi}\int^\infty_{0}\varphi(x)\cos(ay)dx+\frac i\pi\frac1{1+ia} \\
&=-\frac i\pi\frac1{1-ia}+\frac i\pi\frac1{1+ia} \\
&=\frac2\pi\frac{a}{1+a^2}
\end{align}
$$
Hence, $$f(y)=\frac{2}{\pi}\frac{y}{1+y^2}$$
Verification:
(The calculations below are a bit sloppy as I assumed that the integral and differentiation can be interchanged.)
$$\begin{align}
L.H.S.
&=\frac2\pi \int^\infty_0\frac{y}{1+y^2}\sin(xy)dy \\
&=-\frac2\pi\frac{\partial}{\partial x}\int^\infty_0\frac{\cos(xy)}{1+y^2}dy \\
&=-\frac1\pi\frac{\partial}{\partial x}\int^\infty_{-\infty}\frac{\cos(xy)}{1+y^2}dy \\
&=-\frac1\pi\frac{\partial}{\partial x}\pi e^{-x} \\
&=e^{-x}\\
&=R.H.S.
\end{align}
$$
Here we utilized the well-known integral identity
$$\int^\infty_{-\infty}\frac{\cos(ax)}{1+x^2}dx=\pi e^{-|a|}$$
For its proof, see the accepted answer here.