$$\int^{3}_{-1}\bigg(\tan^{-1}\bigg(\frac{x}{x^2+1}\bigg)+\tan^{-1}\bigg(\frac{x^2+1}{x}\bigg)\bigg)dx$$
what i try
from $$\tan^{-1}(t)+\tan^{-1}\bigg(\frac{1}{t}\bigg)=\frac{\pi}{2}.$$
$$\int^{3}_{-1}\tan^{-1}\bigg(\bigg(\frac{x}{x^2+1}\bigg)+\tan^{-1}\bigg(\frac{x^2+1}{x}\bigg)\bigg)dx=\int^{3}_{-1}\frac{\pi}{2}=2\pi$$
But answer is $\pi$
How do i solve it Help me please
(
, as is suggested by your attempt. – Przemysław Scherwentke Jan 02 '20 at 06:34