Here is a problem on Optimization on Least Mean Square with answer of my class of Machine learning
Consider the least mean squares problem: $$ \min_{x\in\mathbb{R}^n}\|Ax - b\|_2^2 $$
Suppose $A \in \mathbb{R}^{m×n}$ is a full rank matrix and $m \ge n$. Find the closed-form solution of the least mean squares problem.
Hint: If $A \in \mathbb{R}^{m×n}$ is a full rank matrix and $m \ge n$,then $A^\top A$ is a positive definite matrix.
Solution: Let us first expand the objective function: \begin{align*} \min_{x\in\mathbb{R}^n}\|Ax - b\|_2^2&=(Ax - b)^\top(Ax - b)\\&=x^\top A^\top Ax - x^\top A^\top b - b^\top Ax + b^\top b\\ &= x^\top A^\top Ax - 2x^\top A^\top b + b^\top b \end{align*} This is a convex function of $x$ and so to find the minimum we take the derivative and set it equal to zero: $$ \nabla_x( x^\top A^\top Ax - 2x^\top A^\top b + b^\top b) = 2 \top A^\top Ax - 2 A^\top b = 0 $$ We know that $A^\top A$ is positive definite and invertible. Solving the last equation for $x$ we have $x = (A^\top A)^{-1}A^\top b$.
My questions
- Given a matrix $A \in \mathbb{R}^{m×n}, m \ge n$, it is full column rank (and not simply full rank), right?
- In the expression $\nabla_x x^\top A^\top Ax$, how do we know if the result is $2x^\top A^\top A$ or $2A^\top Ax$?