Let $K$ be the quadratic extension of p-adic field $\mathbb{Q}_2$, then $K=\mathbb{Q}_2(\sqrt n)$, where $n=-1, \pm 2, \pm 3, \pm 6$.
Then I have seen a table in page $34$ of the book $\text{Arithmetic of quadratic forms}$ by Goro Shimura as follows:
\begin{array}{c | c} K & N_{K/\mathbb{Q}_2}(K^{\times}) \\ \hline \mathbb{Q}_2(\sqrt{-3}) & 4^{\mathbb{Z}} \mathbb{Z}_2^{\times} \\ \hline \mathbb{Q}_2(\sqrt{-1}) & 2^{\mathbb{Z}} \cdot \{ x \in \mathbb{Z}_2 |x-1 \in 4 \mathbb{Z}_2\} \\ \hline \mathbb{Q}_2(\sqrt{3}) & (-2)^{\mathbb{Z}} \cdot \{ x \in \mathbb{Z}_2|x-1 \in 4 \mathbb{Z}_2 \} \\ \hline \mathbb{Q}_2(\sqrt{2}) & 2^{\mathbb{Z}} \cdot \{ x \in \mathbb{Z}_2 |x\pm 1 \in 8 \mathbb{Z}_2\} \\ \hline \mathbb{Q}_2(\sqrt{-2})& 2^{\mathbb{Z}} \cdot \{ x \in \mathbb{Z}_2 |x- 1 \in 8 \mathbb{Z}_2 \ \text{or} \ x-3 \in 8 \mathbb{Z}_2\}\\ \hline \mathbb{Q}_2(\sqrt{6}) & (-2)^{\mathbb{Z}} \cdot \{ x \in \mathbb{Z}_2 |x- 1 \in 8 \mathbb{Z}_2 \ \text{or} \ x-3 \in 8 \mathbb{Z}_2\}\\ \hline \mathbb{Q}_2(\sqrt{-6}) & 6^{\mathbb{Z}} \cdot \{ x \in \mathbb{Z}_2 |x\pm 1 \in 8 \mathbb{Z}_2 \} \\ \hline \end{array}
where $N_{K/\mathbb{Q}_2}$ denotes the field norm.
My question is-
I know to calculate field norm at a point of a field in few ways like by multiplication map, by using Galois group etc.
(i)But how to calculate the norm of the above fields $K^{\times}$ ?
(ii) Does it mean $N(K^{\times})=\{N(a) \ | \ \forall a \in K^{\times} \}$?
(iii) Can you please help me in case $-1, -2$ in the above cases ?