$$I=\int_0^1\frac{\arctan x}{x}\ln\left(\frac{x+x^3}{(1-x)^2}\right)dx\\=\int_0^1\frac{\arctan x\ln x}{x}dx+\int_0^1\frac{\arctan x}{x}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx$$
For the first integral, write the taylor series of $\arctan x$
$$\int_0^1\frac{\arctan x\ln x}{x}dx=\sum_{n=0}^\infty\frac{(-1)^n}{2n+1}\int_0^1x^{2n}\ln x\ dx=-\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^3}=-\beta(3)=-\frac{\pi^3}{32}$$
where $\beta(3)$ is the Dirichlet beta function.
as for the second one, it is evaluated here
$$\int_0^1\frac{\arctan x}{x}\ln\left(\frac{1+x^2}{(1-x)^2}\right)dx=\frac{\pi^3}{16}$$
$$\Longrightarrow I=\frac{\pi^3}{32}$$
\begin{eqnarray} \int_0^1\arctan x\ln\frac{1+x^2}{(1-x)^2}\frac{\mathrm dx}x &=& \int_1^\infty\arctan\frac1x\ln\frac{1+x^2}{(1-x)^2}\frac{\mathrm dx}x;. \ &=& \int_1^\infty\left(\frac\pi2-\arctan x\right)\ln\frac{1+x^2}{(1-x)^2}\frac{\mathrm dx}x;. \end{eqnarray}
Unfortunately there's a minus sign, so this yields a way of obtaining the integral from $0$ to $\infty$ rather than a way to express the integral from $0$ to $1$ in terms of the integral from $0$ to $\infty$.
– joriki Dec 31 '19 at 08:07$$ \int_0^\infty\arctan x\ln\frac{1+x^2}{(1-x)^2}\frac{\mathrm dx}x=\frac\pi2\int_1^\infty\ln\frac{1+x^2}{(1-x)^2}\frac{\mathrm dx}x;, $$
which according to Wolfram|Alpha is $\frac{3\pi^3}{16}$. Not that this is any real progress; I'm just thinking out loud in case any of this happens to help.
– joriki Dec 31 '19 at 08:17