Theorem: $AB$ and $BA$ have the same eigenvalues, where $A_{n\times n}$ and $B_{n\times n}$, and $\alpha\neq0$
Step 1: Let $v$ be an eigenvector corresponding to the eigenvalue $\alpha\neq0$ of $AB$. $ABv=\alpha v$ and by definition $v\neq0$. We are looking for a vector $w$ such that $BAw=\alpha w$
2. If we apply $B$ to both sides of $ABv=\alpha v$, we have $BABv=B\alpha v=\alpha Bv$. Then, $BA(Bv)=\alpha (Bv)$ and $w=Bv$. If we can show that $Bv\neq0$ then $w$ is an eigenvector, $\alpha\neq0$ is an eigenvalue of $BA$, and $AB$ and $BA$ have the same eigenvalues when $\alpha\neq0$.
3. $\alpha\neq0$ and take $Bv=0$. If $Bv=0$, $ABv=0=\alpha v$. As $v\neq0$, $\alpha=0$, however this is a contradiction and therefore $Bv\neq0$ and $w$ is an eigenvector. As $w$ is an eigenvector, $\alpha\neq0$ is an eigenvalue of $BA$, and $AB$ and $BA$ have the same eigenvalues when $\alpha\neq0$.
Q.E.D.