I'm given this recursive succession: $a_{n+1}=\frac{a_n+2}{3a_n+2}, a_0>0$.
This is what I've done: $L=\frac{L+2}{3L+2} \rightarrow L_1=\frac{2}{3}$ and $L_2=-1$
if $a_0 >0 $ then $a_n>0 \forall n \in N \rightarrow $ the succession is positive $\forall n \in N $and $L_2=-1$ is impossible.
if $a_n >0 $ then $a_n+2<3a_n+2 \rightarrow a_{n+1}=\frac{a_n+2}{3a_n+2} <1$ and then all the succession is beween $0$ and $1 $ excluded.
the succession jumps back and forth the value $\frac{2}{3}$ because:
if $a_n<\frac{2}{3}$ then $a_{n+1}>\frac{2}{3}$
if $a_n>\frac{2}{3}$ then $a_{n+1}<\frac{2}{3}$
Once I arrived at this point I don't know how to conclude that the limit of the succesion is if $\frac{2}{3}$ Can someone help me to understand how to procede?